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LINEARIZED SUPERSONIC AEROFOIL THEORY. PARTS I AND II
By J. C. GUNN, University of Manchester*

(Communicated by S. Goldstein, F.R.S.—Received 31 December 1946)
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PART I

y Linearized supersonic aerofoil theory is developed by operational methods. It is shown that a wide
variety of problems can be handled by these methods, which have the advantage of very directly
exhibiting the analogies between supersonic aerofoil and other wave problems. Results for the lift

2 and drag on semi-infinite rectangular wings obtained by the cone-field method of Busemann are
> 'S confirmed, and a recurrence method is developed for dealing with a finite rectangular wing of
O E arbitrary chord. A very general Green’s function method, analogous to that employed in diffraction
&’ problems, is also developed by means of which a wide class of problems involving tapered wings or
=, curved leading edges can be solved.

LT O :

=w INTRODUCTION

The linearized theory for supersonic flow past an aerofoil of infinite aspect ratio was first
put forward by Ackeret, and subsequently somewhat extended by Busemann. A summary
and critique of this type of theory has recently been given by Lighthill (19444), which shows
that the results given by the theory are fairly accurate for moderate Mach numbers and
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328 J. C. GUNN ON LINEARIZED SUPERSONICG

generally give a reasonable indication of the resultant forces to be expected on an aerofoil
surface. This paper is concerned with the extension of the linearized supersonic theory to
flow past finite aerofoils, so far as possible of arbitrary plan and cross-section. In fact,
certain limitations will be found in the applicability of the theory, which will be discussed
as they arise.

A brief discussion of previous work on supersonic flow past finite aerofoils is perhaps
necessary to explain the author’s standpoint. The first attempts were made by Schlichting
(1936) on the basis of a lifting-surface theory put forward by Prandtl. Unfortunately, an
error in the analytical treatment led to the conclusion that the problem could not be solved
analytically, and on this basis some false numerical solutions were given. The error in
Schlichting’s work was first detected by Busemann (1943) who, by the so-called ‘ cone-field’
method, provided an analytical answer to the problem considered by Schlichting—that
of the rectangular plate aerofoil at incidence. In this country Lighthill (1944.6) in the mean-
time refined the conceptions underlying Schlichting’s work, introducing the idea of super-
sonic ‘sources’ and ‘doublets’, analogous to those used by Karman and Tsien. By this
means Lighthill showed that no induced drag was to be expected on an aerofoil of rectangular
plan—with chord less than a certain limiting length—but did not detect the analytical error
in Schlichting’s treatment. Taunt & Ward (1946), following up Lighthill’s work, succeeded
in deriving the correct analytical solutions for flow past some straight-edged aerofoils.
More recently, the author has had the benefit of seeing an advance copy of some further
solutions by Ward of problems concerned with straight-edge aerofoils treated by a modi-
fication of Busemann’s cone-field method. '

The author’s initial approach to the problem was made on the hypothesis that lifting
surface, or, what is the same thing, supersonic doublet, methods were unlikely to be the best
means of handling the problem. The equation for the velocity potential in linearized
supersonic flow is exactly the two-dimensional wave equation, and suggests to any problem
of flow past an aerofoil many physical and formal analogues in the field of acoustics, hydro-
dynamics and electromagnetic vibrations. It was felt that the methods most fruitful in the
latter type of problem would also be most suitable for the treatment of the present aerofoil
problems. An additional advantage of this approach was the hope that the physical
analogies might lead to a better physical insight into the aerofoil problem, if not suggest
an experimental analogue capable of more simple measurement. This, then, must be the
excuse for bringing yet another method to bear on the linearized aerofoil problem.

FUNDAMENTAL EQUATIONS

It will generally be assumed that the aerofoil is at rest in a supersonic stream with
undisturbed velocity U at infinity. The direction of the stream is taken as along the z-axis,
and the aerofoil is assumed to lie, to the first order, in the plane y=0. The x-axis is then
along the span of the aerofoil.

We assume that the deviations of the velocity components, pressure and density from their
steady values are infinitesimally small, so that their squares can be neglected. The compo-
nents of the velocity disturbance will be denoted by (, v, w). Using the Euler equations, and
the continuity equation, together with the equation of state for the gas, assumed perfect,
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AEROFOIL THEORY. PARTS I AND II 329

and the adiabatic condition, we can easily find the equation which must be satisfied by the
velocity potential from which (%, v, w) can be derived. In fact, for steady motion we have

du  1dp A 10 dw  1dp)

iz~ pox’ Tz pdy’ Tz pdz

du dv  Jdw dp . (1)
(0x+3y+0z)+Uﬂz 0,

plp =RT, p[p? = const., )

where p, is the undisturbed density of the fluid. If we let
(ua v, w) = Ugra‘d ¢a
it is easily seen from the above equations that, to the first order,

U292
Vi =k @

where @, = velocity of sound in the undisturbed medium. Also the excess pressure due to the
velocity disturbance is found from the expression
d
Ap=—p Vs =—p, 2%, | (3)

As usual, we shall denote the incident Mach number U/a; by M. In the supersonic cases
treated M >1, and we introduce the symbol « such that

(M2—1) = a2
The Mach angle g is then cot™!a.
We have then to deal with the equation

2, 0 _ 0%
PP i = (4)

subject in each case to the appropriate boundary conditions.

BoOUNDARY CONDITIONS

At any point on the surface of the aerofoil the flow of the fluid must be along the surface.
Suppose, in particular, that one of the aerofoil surfaces is given by y = (¥, z), where 7 is
a small quantity. Then, it can at once be seen that the condition for tangential flow, at any
point on the surface, is that, at that point,

¢ _ 0

dy 0z’
The further assumption is now made, consistent with our assumption of a first-order theory,
that the above value of d¢/dy is applied, not at the point on the aerofoil surface, but at its
projection on the plane y = 0. Accordmgly, if the upper and lower surfaces of the aerofoil

are given by
y= ”l(x:z)a y= 772(76', Z)

41-2
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330 J. C. GUNN ON LINEARIZED SUPERSONIC

respectively, then the boundary condition at the aerofoil surface is that

¥ mwz) . as2)
3y 0z 0z

over the plan of the aerofoil, respectively, as y — 0 from above and below. This, together with
the conditions at infinity and the condition that there shall be no propagation of disturbance
upstream, is sufficient to determine ¢ uniquely. If the origin O is taken at a point on the
leading edge upstream of which there will be no disturbance, then the latter condition can

. . . . i}
be mathematically contained in the statement that, over the plane z = 0, ¢, b—g = 0.

It is found convenient to divide the actual problems encountered, according to their
boundary conditions, into two different classes—the symmetrical and the anti-symmetrical
cases. Thus, for the general case referred to above, we may write

20605 +0,2) (= 200) | = () nln gL nn D) —mln2)

Z%gé(x,—— = ) (e, 2) ol 2))— e ) (5 2) el 2),

where, by an obvious notation ¢(x, +-0, z) denotes the value of ¢ at a point on the xz plane
as y-> 0 through positive values. It will thus be sufficient if we can solve the two following
problems, which we classify according to the symmetry of ¢:

Symmetrical problem—boundary conditions:

%% 577(% z) 4 In(x,2) _

(3y)y—o+ = f(x,2) say, (@)FO_: 82 —f(x, z). (5)
Anti-symmetrical problem:

R e

The first of these problems corresponds, in practice, with the case of a symmetrical aerofoil
at zero incidence. The second problem corresponds with the case of a thin plate aerofoil
which may be at any incidence. In the particular case of a flat plate aerofoil g(x, z) becomes
the constant ¢ over the plane of the aerofoil, where ¢ is the angle of incidence.

OPERATIONAL TRANSFORM OF PROBLEM
With axes as defined previously we introduce the Laplace transform, with respect to z,
of the fundamental equation
0%p +(32¢ 0%
%2 " 0y? “ oz )
Thus, if ¢(x,y) = fwe“i’zyﬁ(x, Yy, z) dz is the Laplace transform of ¢, then, using the fact that
0

with our choice of axes ¢, d¢/dz are zero over the plane z = 0

I
Tt ay¢ = )
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AEROFOIL THEORY. PARTS I AND II 331

The method can only be used effectively if a boundary condition for the transform equation
can be found, corresponding to the condition for d¢/dy over the surface of the aerofoil. In

fact 7 .
=), e f’z(@)a’z,
so that the value of d¢/dy must be known for a given x and y for all values of z before 94 /dy
can be found. This at once enables us to distinguish the problems which can be approached
directly by this operational method. In the first place all problems with boundary conditions
of the symmetrical type can be so approached, for in these cases it is clear that, except over
the plan of the aerofoil, d¢/dy is zero everywhere over the plane y = 0.

~ For the anti-symmetrical problems more rigid limits are set. The leading edge need not
be normal to the incident stream, nor indeed straight, but it must nowhere be ‘swept back’
at as much as the Mach angle. By this condition it is ensured that ahead of the aerofoil
0¢/0y = 0 over the plane y = 0. If the aerofoil is finite then its ends must be parallel to the
incident stream. In the theoretical treatment it may generally be supposed that the aerofoil
extends an infinite distance downstream. In practice for an aerofoil of finite chord the most
important information sought is the value of the excess pressure at any point on its surface.
Provided that the trailing edge is also at no point swept back beyond the Mach angle, this
pressure will be the same as that on an infinite aerofoil continued in any way beyond the
trailing edge. The flow behind the trailing edge may then be investigated by the usual
methods. Effectively, this involves simply the solution of the two-dimensional wave equation
subject to certain initial conditions of velocity and displacement. As the problem does not
appear to be of special interest it will not be discussed here.

ANALOGOUS PHYSICAL PROBLEMS

Before proceeding specifically to the solution of the aerofoil problem, it may help both for
the better physical understanding of the question, and to suggest methods of approach, to
consider some analogous physical problems. The three most obvious analogies are: (a) long
gravity waves on a plane sheet of water of uniform depth, (b) cylindrical waves of sound, -
(¢) transverse vibrations of a uniformly stretched membrane. Of these we shall only refer to
the first in any detail; the fundamental equations for this case are recalled briefly below.

We suppose we have a plane sheet of water of uniform depth /. Then the equation for the
velocity potential ¢ in the wave propagation is

82¢+@ _10%

a2 TaE = aae O &b (8)

~where the -, y-axes are taken in the surface plane of the water. The elevation of the surface
at any point above its mean level is given by
kg ' '
{=— 29 _ (9)
Comparing with the aerofoil problem we see the two problems are formally identical if, in

the former, we replace z by ¢ and « by 1/c. To any aerofoil problem with given boundary
conditions will correspond a wave problem, and from (3) and (9) we see that elevation of
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332 J. G. GUNN ON LINEARIZED SUPERSONIC

the surface in the wave problem corresponds to the excess pressure in the aerofoil problem.
The ‘wave drag’ in the aerofoil problem simply corresponds, when multiplied by the stream
velocity, to the energy of the wave system in the long-wave case.

The analogy is particularly simple for the case of the finite flat plate rectangular aerofoil
at incidence. Here the wave analogy is simply the case of a plank, of length corresponding
to the aerofoil span, moved with appropriate velocity normal to its length.

FINITE SYMMETRICAL AEROFOIL AT ZERO INCIDENCE

As a first example of the methods to be employed we consider the simple case of an aerofoil
of rectangular plan, with span 25 and chord ¢, the leading edge extending along the x-axis
from x = —b to x = +b. The surface of the aerofoil we assume to be the same for all ¥, given,

say, by

. y=1(z).
Then as boundary condition we have
o { 7 (z) y=0-+, " —b<x<b,

=t = or

dy —7'(z) y=0—, <z <e.

For this symmetrical type of problem it is, as noted above, clear that d¢/dy = 0 off the aerofoil
on the plane y = 0.

So (%)yeo: f :e‘f’z (%)F Odz = f :efﬁzfy’(z) dz =f(p) say for —b<x<b
and’ (%?Lfﬂ (|]>5).

The mathematical problem is thus a fairly simple one. We are given that ¢ satisfies the
equation

9% 5¢

2425

‘ axz —I— = p ¢)
and along the x-axis d¢/dy = 0, except for the cut from ¥ = —b to ¥ = +b. Along this cut
a¢~>if(p) as y->=0.  (10)

Further, ¢ -0 as y—- 0, if the disturbance is only a finite one.
- Itis immediately clear that ¢ is an even function of y, thus only positive values of y will be
considered. @ is also an even function of x, so that

cosagre~ WY (y>0) (11)

forms a suitable elementary solution, out of which to build the complete solution to our
problem. We assume
¢ = f a(q) cosagxe~ VW )y dg. (12)
0

Then, granted the possibility of differentiating under the integral sign,

% B —“f : J(#*+¢%) a(q) cosagxemV v dg. (13)
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AEROFOIL THEORY. PARTS I AND II 333
The boundary condition (10) enables a(g) to be determined. We find in fact
2 sin agb
_ 14
a(q) T J? ¢ ag ). (14)

Hence we have the solution

i ——z—f( )JwCOSa‘-quin“qbg—W(b“az)ydq

e o 4J(@*+4)
_ 2 P cos agx sin agb ey gy, 15
ey @ ac [T Pedy (15)

. e~ b8 p—av(pP+eDy
The inverse transform for

TR is well known. It is given by
{ 0 for 0<z<{+ay,
JolgH(z—0)?—a?y?] for z>{+ay.
Hence we find, for the case 0<(z—ay) <c,
2 [fzmay) | L (® cos agx sin agh
§=— [T O de[ Mg e~ 0 -t SRS gy 1)

The second integral is of a well-known type. For our purposes it is most instructive to use
the form
©sinaqJ,(bq) d Ja dt .
20V g = | e, if <0,
fo ¢ A7) gy } (17)
=im, ifa>),

where we suppose both a, > 0. Usihg this integral the final solution for ¢ can easily be

deduced. Itis that
aff O as)
sJ[(z—8)?—a®{y?+ (x—£)%]°

where the area of integration § is that part of the region

—(0+x)<E<(b—x), 0<{<z—ay,

which satisfies (z—{)2=a?{y?+ (x—£)?}. Geometrically, treating ({,£) as co-ordinates of
position on the aerofoil surface, this area can be regarded as that portion of the aerofoil
surface within the forward Mach cone from the ‘field point’ (x,y,z). This solution was
obtained by other means by Lighthill. He interpreted

1
JI(z=0)?—a?{y?+ (x—£)%]

as the potential of a unit ‘supersonic’ source situated at the point (£, 0,¢), having regard to
the analogous position which this fundamental solution holds with respect to equation (4),
compared with the inverse distance solution for the potential equation. :

The interpretation of our result is then clear. We see that each element of area d¢ d{ of thc

h(i)rvg The potentlal at any field point

aerofoil acts as a supersonic source of strength
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334 J. C. GUNN ON LINEARIZED SUPERSONICG

is then found by integrating over the sources which can contribute to its potential, i.e. those
within the forward Mach cone from the field point.

The result has been demonstrated for an aerofoil of rectangular plan, but can be
immediately extended to any shape of aerofoil. If the surface of such an aerofoil is, in general,
given by

y=1(*2),

then the supersonic source strength per unit area is

10
- ma 2z 7 (x ’ Z) .

So far we have been dealing with the case of a symmetrical aerofoil at zero incidence, which
is of interest only in giving the magnitude of wave drag for this case. Before proceeding to
the detailed consideration of this drag it will be advantageous to consider the extension of
our methods, necessary to deal with the antisymmetrical case, from which the lift on a thin
aerofoil at incidence may be calculated.

Mathematically the simplicity of the zero incidence case arises from the fact that d¢/dy
can be specified over the plane in which the aerofoil lies. When we take the Laplace trans-
form, then in the consequent two-dimensional equation for @, 3¢ /dy is known along the whole
of the x-axis. Thus, when we represent ¢ by a Fourier integral, the consequent integral
equation to determine the coefficients is an easy one, involving only the inversion of the
Fourier integral. In the case of incidence circumstances are entirely different, for now we
have no knowledge of 3¢/dy except at the aerofoil surface. Toillustrate thedifficultiesinvolved
we shall consider briefly an important special case—that of a flat plate aerofoil of rectangular
plan, set at incidence in a supersonic stream, with its leading edge normal to the stream.
For the theoretical treatment we suppose the chord of the aerofoil to be infinite. It is clear
that, if the trailing edge is parallel to the leading edge for any actual case, then the pressures
on the wing are the same as they would be for an infinitely extended aerofoil.

FINITE RECTANGULAR PLATE AEROFOIL AT INCIDENCE

Once more we assume the span of the aerofoil to be 25, and assume that the leading edge
lies along the x-axis from B’, where x = —b to B, where x = +b. The equation satisfied by

= ( j ooe’*”zgzﬁ dz) is again - 2ot
0%¢ 0%
0 79 — 22
dx2 +ﬁy2 = a’p°$,

RSy

and the boundary condition is that ¢ /dy takes the value —¢/p as y —0 from above or below,
for —b<x<b. ¢ is continuous except across the cut B’B, and tends to zero as y — c0. From
symmetry considerations it is clear that ¢ is an odd function of y, and has the value zero
along the x-axis, except in the cut from B’ to B. Across this cut there is a discontinuity in ¢.
We assume that for y positive the solution is expressed in the form

¢ = f “a(q) eV cos agudy,
0
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AEROFOIL THEORY. PARTS I AND II 335

then the integral equation to determine a(¢) may be written
wa(quz) a(q) cos agxdq =£&, 0<x<b,
RAY

fwa(q) cosagxdg = 0, x>b.
0

The integral equation is of the type called ‘dual’ by Titchmarsh, and its direct solution does
not appear to present a simple analytical problem.

The other possible direct method of solving this problem would be by the 1ntroduct10n of
elliptic co-ordinates. This possibility has been briefly investigated. Whilst we can find a
formal solution in terms of the elliptic cylinder wave functions (Mathieu functions), its
interpretation, in the light of existing knowledge of Mathieu functions, is of impracticable
difficulty. Solutions have been given by Strutt (1932) for analogous problems to this one,
but involving only a single frequency, e.g. radiation of simple harmonic sound waves from
a vibrating lamina of finite width but of infinite length. For such problems the Mathieu
function treatment is quite satisfactory, and leads to numerical results without undue labour.

B 0 B
x
,u,
C
D D
E
y F
(
Z.
Ficure 1

The matter is quite different, however, when a transient problem is considered, involving
an infinite range of complex frequencies for its operational treatment. Rather a similar
situation will be found later when the semi-infinite aerofoil problem is discussed. Here once
more the treatment of the boundary-value problem in terms of the appropriate proper
function (parabolic cylinder functions) leads only very indirectly to the result, which can
be obtained much more simply by other methods. Such simpler methods have not been
found for the ‘finite-strip’ problem, and we are forced to the conclusion that no complete
solution of the rectangular derofoil problem at incidence and with infinite chord is easily
obtainable. ‘

Fortunately, however, in practice such a solution is not required. Suppose, for example,
that the aerofoil is of chord less than & cotu(= «b). This will generally be true in practice
except at Mach numbers just slightly greater than 1. Then the Mach lines from the leading
corners BB’ (figure 1) will not intersect on the aerofoil, and it is clear that the solution of the
problem can be found from that for a semi-infinite wing—the leading edge extending along
the x-axis—from 0 to -+ oo say. This solution, found by superposing two semi-infinite wing

Vor. 240. A. ‘ 42
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336 J. G. GUNN ON LINEARIZED SUPERSONIC

solutions, will still hold after the two Mach lines intersect at C—the two_‘linearized’ waves
radiating from the two edges simply adding. It will cease to hold at DD’, when the waves
from B, B’ first reach the other ends of the aerofoil at D’ and D respectively. However,
a process of successive approximation will be found by which the solution can be continued,
first for the portion DF, and then for successive portions of length 2ah. The process, in fact,
consists in the addition to the original wave system of successively more complicated waves
beginning at DD’, FF’ and so on. ,

Mathematically, the technique required for this treatment is very similar to that intro-
duced by Sommerfeld (1897) in his classic discussion of the diffraction of electromagnetic
waves at a semi-infinite perfectly conducting obstacle, and later simplified and developed
by various authors, including Lamb and Carslaw. In particular, our method of the succes-
sive introduction of new waves at D, F, etc., is very similar to the approximate method
employed by Schwarzschild (19o2) for the solution of the problem of diffraction at a slit of
monochromatic electromagnetic radiation. In fact, the method is much better adapted for
our problem than for Schwarzschild’s, for in his case the complete infinite series was required
for a solution, and its convergence is sometimes slow, whereas in our case each term of the
series gives an exact solution for an aerofoil with chord extended by a further distance.

In this discussion of these problems it may aid description if one of the more picturesque
physical analogies is considered in parallel with the aerofoil problem. For this purpose
the long-wave case is chosen—the analogous problem being the discussion of the wave system
produced by a semi-infinite plank moved normal to itself in a shallow sheet of water.

SEMI-INFINITE WING PROBLEM

We suppose the leading edge to extend along the x-axis from x=0 to co. In the notation
of the last paragraph, we require to find the solution of

7,
Tt e — P,

making 3@ /dy ——e¢/p as y— 0 from above or below for x>0, such that also ¢+ 0 as y —4- co.
For economy of notation we write ap = k. Following Lamb (1932) we assume that a solution
of the equation may be obtained in the form '

¢ = e"kyu.’ - (19)

. 0%u 0% du :
The equation for # becomes 9?—5-5? = 2ka—y. (20)

We now introduce parabolic co-ordinates (£,7) defined by the relation

(x+iy) = (E+i)%

%u  0%u du  ,0u
so that (20) becomes 9—52—{—-3?2——4/:{77 (75+§57}} = 0. _ (21)
This equation has solutions in the form u = f(§+7) or u = g(£—7), where f and g satisfy
respectively the equations 9 '
I vorr? o, (22)
dar? ar .
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Similar solutions are found in the form ¢ = ¢®u, where again u = f(£+7) = f(r) say or
= g(£—17), the equations for f and g being as before but with the sign of £ changed For
the first case, on 1ntegrat1ng, we have

f= A+Bf o dr, g — C+Df’e—kﬂdr.

Combining the various possible solutions, remembering that ¢ -0 as y—> 00, we find as
a solution satisfying the boundary conditions

é = _;:/Z%‘Z)—)— l:e“ﬂngtﬂe‘amz dr-—e”“l’yfzge‘“l"z dT:l. (23)

E+7>0
g-7<0 g=-7

g+7<0
g-7<0

¥
E+750 =7 7=const. - £+71>0
g-n<0 £-1>0
0 7=0

Ficure 2

This is the unique solution of our problem. The signs of the expressions £ +7 in the different
quadrants must be carefully observed. Their behaviour is summarized in figure 2. @ is, of
course, an odd function of y. It is zero along the negative x-axis, and has a discontinuous
change of value across the positive x-axis. If we denote by r the distance of any point P(x, y)

from O, then
E+n==+J(r+y), E—n==2J(r—y).

¢ can then be written for the case where y> 0 in the more significant form

Py —ap 0 | » ©
¢ _ {1 ¢ 5 y} 1 [e“f’yf e"“i’ﬂdrie‘“l’yj et dT:I, (24)
€ a p p\/(mxp) V(rt+y) Vir—y)

where the first term is only present for x>0, and in the second term the + and — signs
correspond to x>0, and x<0 respectively.

To complete the solution we must interpret the value obtained for ¢ by inverting the
Laplace transform. This is easily done, and we find that, for >0,

£ 2D ) Ao LD )], o

42-2
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where the first term only occurs for x>0, z>ay, and the second term only occurs for z>ar,
having + or — sign according as x>0 or x<0. The solution can be written

- z.lz@i“y) (o) eos/ {%%}—~J( +9) JC-7)
s{Eg)eos [ g JEA] o

with the same provisions as above regarding the presence of terms and their signs. The
dimensionless velocity components will also be given for reference. They are, for >0,

194 gJ(O%—l)cos%ﬁ, (27a)

edx

ig('; - Iism‘lA/{ 2ty }? sin‘lj{%}]+§A/(£—l)sin%ﬁ (27b)‘

(first term appears only for x>0, z>ay, remaining terms appear only for z>ar, and the —
and + signs occur for x>0, x <0 respectively)

196 (1 o Jfalr+y alr—

€dz (5) I: IA/{erocy} IA/{ z(—oc%] (27¢)
(first term appears only for x>0, z>ay, second term appears only for z>ar, and is + or —
according as x>0, x<<0).

The physical significance of the various terms is perhaps most quickly grasped when we
think of the analogous water-wave problem. Suppose we imagine a barrier along the
positive x-axis to be moved with velocity ¢ in the negative y-direction. The solution for the
velocity potential for this problem is identical with that for the aerofoil problem, provided
only we replace z by the time ¢, and 1/a by the velocity of propagation ¢. This wave problem
is perhaps best described by the surface elevation ¢, for which we have the expression (y>0)

o (e ()

with the obvious cautions as to the appearance of the various terms. The first term provides
what we may term the ‘plane-wave’ contribution to the solution. It is present only for
x>0, y<ct and thus represents a box-like region of constant elevation (= —/e/c) spreading
out from the barrier with velocity ¢. The second term represents a somewhat complex
circular wave, at any time lying within the circle centre O of radius ¢t (figure 3). This wave
arises from the flow around the corner O, which tries to equalize the elevation of the free
surface on the two sides of the barrier, just as in the aerofoil case flow occurs from the high-
to the low-pressure side of the aerofoil. Diagrams of the surface level along lines 4'04,
B’OB are given below (figure 4). The disturbance within the circular wave spreading out
from O with increasing time corresponds exactly, of course, to the disturbance in the aerofoil
case spreading from the leading corner within its Mach cone. The diagram may be taken to
depict either a section of the aerofoil problem at some given value of z by a plane perpendi-
cular to the z-axis, just as it shows the elevation in the wave problem at a given time.
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- The quantity of principal interest is the excess pressure on the aerofoil surface. From (27)
we see that this is given by
b 26 J (9‘_’5) (
pU? " ma s z (28)

for points between the Mach line from O and the edge of the aerofoil. Elsewhere, on the
wing the excess pressure is as in the two-dimensional problem. All the formulae for the
velocity components are, naturally, homogeneous functions of the co-ordinates of the point
of measurement, as from the physical nature of the problem they can depend only on the
angular position relative to 0. This fact is used as the basis of the cone field of Busemann
developed by Ward, to the first of whom the result (28) is originally due.

Y
B
A 0 A
x
Bl

Ficure 3

10 1-0
é//-@g -ne
[ [+
A 0 A B 0 B

(a) (8)

Ficure 4

EXTENSION TO CASE OF FINITE WING

The method of extension to the case of a wing of finite span is now evident. Suppose in
figure 5 that OO’ represent the projections on the xy plane of the two ends of the aerofoil
(or in the wave problem, the two ends of a finite barrier), then it is clear that the solution of
the problem in which d¢/dy must take a specified constant value along 00’ is given by the
superposition of (a) the plane wave 04A4'0’, (b) two circular waves radiating from O and 0,
exactly as given in the previous paragraph. This solution will hold (in the wave problem)
only up to such a time as the wave from O runs off the other end of the barrier at 0’, for if
allowed to continue unaltered, this wave would produce a discontinuity in the water level
across O'x, which is physically impossible. In the aerofoil problem it would, equally, produce
a discontinuity in the excess pressure in the free space beyond either edge of the aerofoil, for
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340 J. G. GUNN ON LINEARIZED SUPERSONIC

values of z greater than that at which the Mach lines from the leading corners reach the
opposite sides (i.e. z = 2ba).

We shall be able to continue the solution for a further time 2b/c (or for a further length
2ab) if we can discover a wave which, starting to radiate from O’ at time ¢ = 25/c, will annul
the discontinuity in potential produced after that time along O’x by the first wave from O.
Symbolically we might denote the plane wave by P, and the initial circular waves from
0, O’ by C,, C{. Then up to time ¢ = 2b/c the solution is given by

$=P+C,+C,.

Thereafter, C; produces a discontinuity along O’x, to annul which a wave C; beginning a
time ¢ = 2b/c is required. The requirement on Cj is that it should produce the required
discontinuity across O’x, but leave d¢/dy unaltered over O’x’. Until ¢ = 4b/c the solution is,
then, ¢ = P+C,+C;+C,+Cy. At ¢ = 4b/c the wave Cj in turn runs off the barrier at O,
producing a new discontinuity in ¢ which must be eliminated by waves C;, C3, and so the
process may be continued.

FIiGURE 5

For the formal carrying out of this process we must be able to solve the following
mathematical problem. Given that

%6 9%

W’l’"gy—g = kza’ . (29'

to find @ to satisfy the following conditions:

(i) ¢ is continuous with continuous first derivatives everywhere except along the positive
x-axis.

(ii) ¢ vanishes at y = =4 00.

(iii) Along the x-axis ¢ takes certain prescribed values, given by ¢ = f(x) say, whether
we approach the x-axis from above or below.

There are, in fact, four problems of this type which can be solved, the solutions of which
will be useful in the sequel. They are given by variation of the condition (iii). Thus

(a) J—f(x) as y— 0 from above or below.
() ¢—+f(x)  asy—0 from above,
—f(x)  as y—0 from below.

(¢) (%) —g(x) as y—0 from above or below.

(d) (3—2)94— g(x) as y—0 from above,

—g(x) as y—>0 from below.
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- These problems will all be solved if we can find the Green’s functions for (29) with the
boundary Ox. From Green’s theorem it is known that if # is a solution of the equation
0%u/dx? 4 0%u/dy? = k*u continuous with its derivatives inside a plane curve C, and if G is
another solution of this equation having a singularity at a point P within C, such that near P,
G ~ —log p, where p denotes distance from P, then u(P) can be expressed in the form

u(P) = —o- fC(Gz—Z—u%g) s, (30)

where n denotes the direction of the indrawn normal to C. For our problem we require two
special choices of G:

(a) G,= 0 along C, then u(P) = +5- 1 BaC;’l ds,
BG. ' (31)
(b) —9; = 0 along C, then u(P) = —5- f 02

In terms of the functions G,, G, our four boundary-value problems may be solved, the curve
C being taken as the x-axis described twice together with the circle at infinity.

DETERMINATION. OF GREEN’S FUNCTIONS FOR A SEMI-INFINITE BARRIER

Formally, the problem of the determination of the Green’s functions for (29) is practically
equivalent with the solution of the problem of an infinite line-source of sound waves in the
presence of a semi-infinite thin plane. The problem has been treated by Carslaw (1899) in
some detail, using Sommerfeld’s method for the derivation of multiform solutions of the
wave equation, and we shall merely sketch the results in our notation.

Let the point at which u ~—log p be the point P, with polar co-ordinates (r,, §,) relative
to the end of the semi-infinite barrier, the barrier being given by # = 0, and 6 = 27. Then
p = J{r*+ri—2rrycos (§—0,)} denotes the distance from P, to an arbitrary field point P.

Now
uy = Ko (kp)

is certainly a solution of equation (29), with the appropriate singularity at Py, K, representing
the usual modified Bessel function of zero order. This solution can be written, with the help
of Cauchy’s theorem, as an integral round a contour in the {-plane,

1

to= g7 | KalkJlr*+1—2mcos (—OY] =, (32)

e’§ eﬂ"o
the contour C(6,) being a small circle around the point { = 6,. In this expression the inte-
grand has singularities given by { = 0+ 2mm, { = 04-ia, +2mn, m any integer, the latter
being branch points. Here we have written

2473

cosha, = .
1 217,

If we denote \/{r2+r§—2rrycos ({(—6)} by R, then in deforming the contour C(,) to co we
must take care that the real.part of R remains positive. This will be so on the contour shown
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in figure 6. If the straight parts of the contour shown dotted are separated by 27, then the
integrals over these cancel each other, and we are left with

1 et df
= f o KolbR) =2, (33)

Uy
where C(6) denotes the curved contour shown. This solution is of period 27, but a solution of
period 4w can at once be formed, namely,

B n
=) oo of );*‘—* C, (34)

u(r, 0570, 0p) L __ gtillo

£_plane

-/
c(6)

foe e e . — —— — — —

L e T T S,

(6+27)

——— e ———
\
1
™.
-Q .
————— e ey

Ficure 6

the integral being taken over the path C(f) appropriate to the value of 6. The properties of
u may be summarized as follows:
. . . 0% Pu o,
(i) u satisfies the equation 3—x~2——|—(—9-y§ = k2u.
(i) It is periodic in @ with period 4.
(iii) It is finite and continuous for all values of (r,f) except at the point (r,0,), where
u~—logp.
(iv) If the values of u for 0, §+ 2m are denoted by u,, u, respectively, then u; +u, = u,.
The required Green’s functions G,, G,, satisfying the conditions (31), are easily expressed
in terms of u, viz.

Gy = u(r, 051, 0o) —u(r, 0519, —04), Gy =u(r,0;1y,0y) +u(r,0;1y, —0,), (85)
where the physical space is given by 0<§ < 27. The boundary conditions are thus satisfied

by an extension of the image method—the essence of the treatment being that the multiform
solution allows the image to be removed from the physical plane. G,, G, can be evaluated by
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choosing as path for u, the lines { = 0+, 0 4 3, from which %, can then be deduced from the
relation u; = uy—u,. The functions found are as follows:

G, (Gy = 0 when 6 = 0, 2m).
We define three regions 0<f<m—0,, (A)
n—0y<0<m+0p | (B)
m+0,<f<2m. (C)

Then in these regions G, has the form
(A) Gy = K[k J{r*+r§—2rrycos (0 —0p)}] — % cos (60— 00)J:K0{k J(r2+1%+42rrgcosh b)}

y cosh £ bdb B
cos (0 —8,) +cosh b

X f K[k (2413420, cosh B)]
. _,

K[k it 4r§—2rmqcos (0-+00)}]+ - cos § (0-+0y)

cosh $bdb
cos (6 +6,) +cosh b’

(36)

(B) G, =asin (A) but without third term.
(C) G, = asin (A) but without first and third terms.

G, (; %—C;%\) = 0 when § = 0, 27.

G, is as G, but with the signs of the third and fourth terms changed.

With a knowledge of G, and G, it is possible, in principle using (31), to find a solution ¢
of (29) such that either ¢ or its normal derivative takes any prescribed values along the
x-axis. A general approach to a wide variety of aerofoil problems is thereby permitted.
Before turning to some of these we shall complete the investigation of the rectangular plate

at incidence.

PRESSURE ON FINITE RECTANGULAR PLATE AT INCIDENCE

We now resume the investigation of a rectangular plate aerofoil of span 24, set at incidence
¢ in a supersonic stream. We have already seen how, provided the chord of the aerofoil is
less than 2¢b[a = ./(M2—1)], the excess pressure can be found by superposing a plane wave
together with two waves, earlier denoted by C), C] from the leading corners 0,0’ and
confined respectively within the Mach cones from these points. The aim now is to extend the
treatment to greater lengths of aerofoil.

Suppose we consider first the wave C, radiating from O in figure 7, with velocity potential
$,, say, then ¢, has the transform

= o py —apr? —aliyf —apr? g } 37
#1 J(am) —?{e L(ﬁy)e T_Hr V(r—y)e ! (37)
Denoting x" = (x—2b) we see that along O'x (i.e. y = 0) ¢, has the value
2 1 2 ,
¢ =3 e~ dr = f(x")  say, (38)

, 1= «/(0‘7”7[’% V(2" +2b)
where ' >0.

VoL. 240. A. 43
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The transform for the wave Cj radiating from A’ must cancel this value of ¢, along O'x,
which, as we have seen earlier, if uncancelled, gives rise to a discontinuity of potential in
the triangle B’A’E. The form of ¢} is thus easily found by the Green’s function method
given above, bearing in mind the further condition that

Igy _ _ .
?—y—_o,, y=0, x<O0.

If n;,n, are used to denote the positive and negative y directions respectively, then, at the
field point Pj with co-ordinates rg, 6 relative to 0’, we find

’ / ’ a ! ’ ’
Bilr 00) = g [ S0 {50 Gulw', 0373, 80) 5o Go (¥, 2ms 1,09 e, (59)
where G, is defined in (36) and we set k£ = ap. Thus we can write
¢ ( 0> 60) = ZIJ‘ SC ) o0’ {Gl (x,a 0; 7(’» 66) — Gl (x" 2m; 76, 6)} dx’. (40)
O’ >
c
e~ 4
A .
D ¢
B B’
Y
Ficure 7

In general this expression is somewhat complicated, but fortunately it is only required when
6’ = m, i.e. along the line 0’0, which permits considerable simplification.

Some transformation of the expression for G, given earlier is desirable. Using the integral
representation for Ky(z) &

Ko@) = [ o gy

it is easily seen that
© e—k«/[ﬂ+r§~2rm cos ¢p+u2l

212 _ |
K[k J/(r*+1r§—21m5cos 4) ] o J[P+7r2—2rrycos ¢+ 2] du. (41)
The second expression, say,
1 ot s cosh 1bdb
= —cos i fo K{kJ(r?+13+2rrycosh b)} 503 g cosh 5”

can be similarly transformed. We can write

4 cosh 10 k2(r2 413+ 2rrycosh b)]
97 €08 ¢j cos ¢+ cosh b dbf eXp { [g ¢ } %,
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and on inverting the order of integration, the integral with respect to & can be transformed
to a more convenient form. If we consider

cosh 1bdb

w v
J = f ¢~ a(cos ¢+cosh b)
0 cos ¢+cosh b’

then dJ/da is easily evaluated

O ()i — 73K

da- A \2a cos 34 da’

where K = ¢~2dt. From the above it can be seen that
v (2a) cos}¢

fwexb (_ k2rr,cosh b) cosh} b b — J( L4 ) k ex (kzrrocos¢) fw éx (—kzvz)dv
0 p £ cos@+coshd N \28/cosig P ¢ 2v/(rro) cos 3¢ P 2£ .

Substituting this value in the expression for B, we find

B= Q—j%;jf: dUJ:/mo)cqs%qs exp {—%[g+k2(r2+ r5— 2270 cos ¢+ 02)]} gg

1> exp{—#k./(r*+r§—2rrycos g +2%)}
2)overpcosty N (121§ 2rrgcosg+07)

dv, —m<$<m. (42)

These transformations enable us to write the Green’s functions G,, G, in somewhat simpler
forms. These simpler forms have also the advantage of making it directly obvious that there
is no discontinuity in G, or G, as we go between the regions 4, B, C. Thus in the three regions
we can write for G,, in place of (36),

Gy(7,057000) = F(r, 70, (0 —05)) —F{r, 70, (0+00)}, (43)
- _ [cexp{—k.J(rP+r3—2rr cosp+1?)}
where F(r,r0,8) = f e o cosg iyt
1 exp{~kJ(r2+r§~2rr0cos¢—|—t2)}dt

2 2V (rrg) cos%¢ N/(rz + 7(2)—_ 27‘7‘0 Cos ¢ + tz)

Returning now to the expression for ¢5(rg, 0;), we see this can be written in the form

’ / ’ 1 ® ! 4 4 4 ’ 4 ’ ! 4 4
310600 = g | LELE (00 @)~ F -0+ Fan o), (a9
where for brevity we denote
a ’ ’ 4 ’ .
g Fesrt ¢)}¢=_00 — F'(—0), etc.

These results become particularly simple in the case 6 = 7, when the derivatives under the
integral signs all vanish, and we are left with

. e~oc/;(x +7rg)

_F'(") = —F'(—m) = }§./(x';) CETAR (45)
\ ‘ 43-2
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Introducing ¢’ in place of 7; for this case, so that £’ denotes dlstance from O’ along the span
of the aerofoﬂ (figure 7), we have the expression

_,—1 © , g e~ apE +x) ,
#=zl, 10, (?)Tgurx') &
2 JE x "y —p(g+)f Co—apt g ) S,
ap+x e~ dr 46
“dm) e EF) versan (40
on substituting from (38). :
We are interested mainly in the resultant pressure on the wing which will be obtained
from the wave with transform ¢35, and the corresponding wave ¢, from 0. For this purpose,
~ considering the former wave, we must find d¢;/dz. Remembering that the transform of

p"% e-—ocﬁ(12+§'+x’) is O’ z<Z “(g, +x, + 1-2) s

1 o '
~/[7’{2~06(§’—|—x'+72)}] z>a(E +x' +12),

. . 3¢ —(¢ +2b) ~—(§ +x) dr
hat 22— %j J A ) 4
vese s 2T e = (47)
pfovided zJa>E£ 4 2b, and is zero if zJa <&’ +2b. As we should expect, this simply means that
the wave Cj produces no effect on the wing until, coming from the leading edge, we cross the
line A’B (figure 7). ASsuming z/ocu> (§’+2b), we see that

4 _ e20) cos 1 J{[alx’ +26) 2=l +)]}
,,2J5f Jeos A el Ol (48)

We shall denote by {’ the quantity (z—2ba), so that &, {’ denote the co-ordinates of any
point P on the wing, relative to A’ (figure 7). The upper limit in the integral over x” simply
corresponds to the point F on the line AE, which is the last that can affect conditions at P.

For numerical integration it is convenient to introduce the substitution x" = £'s?, giving

‘7¢2 A/ COS—I Lutt2b ) du . (49)
“’”ZJ /{%+2b~§’(1 +u2)}1+u2 |

Unfortunately, the integral does not appear to be integrable in simple analytical form. Also
it cannot be made to depend on any single parameter, but must ultimately be regarded as
a function of the two variables £’ and {’. One point may 1mmed1ately be noted, however; as

we make §' =0,
¢2 co —1A/(2[’“),
e z ]

so.exactly annulling the pressure discontinuity along the edge 4’B’ of the wing, which would
otherwise appear after 4'.

With various other minor substitutions (49) can be brought into a form suitable for
systematic computation, and its value has been calculated for (§'/26) and ({'/2ba) lying
between 0 and 1. In this way, superposing the plane wave, and the waves C), C, C,, C},
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excess pressures have been calculated over a rectangular plate aerofoil span 26, and chord
4ab. The numerical results are discussed in the following section.

The process can be extended indefinitely. The value of ¢; beyond the edge Bz of the aero-
foil can first be calculated, and a result of a similar form to (48) then enables the excess
pressure from the wave C; to be calculated, and so the process can be repeated until the
trailing edge of the aerofoil is reached

RECTANGULAR PLATE AEROFOIL AT INCIDENCE—NUMERICAL RESULTS

We now consider the numerical results for the rectangular flat-plate aerofoil at incidence.
At corresponding points on the upper and lower surface there are, of course, equal and
opposite excess pressures due to the disturbance produced in the uniform flow. These excess
pressures are found by summing the contributions from the appropriate ‘ waves’ as described
earlier—the initial plane wave from the leading edge, supplemented by the cone waves
from 0, 0, 4, A, etc. (figure 7). The plane-wave excess pressure will be denoted Ap,. It is
given on the upper surface by :

4py = “EPVZ-

We shall use 4p,, 4p;, 4ps, Apz, etc., to denote the excess pressures in the waves from 0, 0,
4, 4', etc., respectively.

In tables 1 and 2 are tabulated 4p,/4p,, 4p,/Ap, respectively, calculated from (28) and
(49). In table 3 the total excess pressure Ap is tabulated, also as a multiple of 4p,. The solution
is continued only for a wing of chord 4ab The possibility of further continuation is dlscussed
above.

TABLE 1. VALUESs OF 4p,/4p,

x[2b

0 01 02 03 04 05 - 06 07 08 09 10

0 - — — — — — — — — — —

02 10 05 00 - - = = = = ==

04 10 0667 05 0333 00 - - = = = -

s 06 10 0732 0608 0500 0392 0268 0-0 - -

2 08 10 0769 0667 058 0500 0420 0333 0231 0-0 - -

S 1.0 1.0 0795 0704 0631 0564 0500 0436 0-369 0206 0205 0-0
12 1.0 0814 0732 0667 0608 0553 0-500 0-447 0392 0-333  0-268
14 1.0 0828 0753 0694 0640 0592 0-546 0500 0-454 0-408  0-360
1.6 10 0839 0769 0714 0667 0623 0580 0540 0500 0460 0-420
1.8 1.0 0849 0784 0734 0687 0646 0-608 0571 0-536 0500 0-464
20 10 0856 0795 0747 0-704 0667 0631 0597 0564 0-532  0-500

TABLE 2. VALUES OF Ap,/4p,
v . £'12b

0 o1 - 02 03 04 05 06 07 08 09 10
00 00 _ = =L - === - -
s 02 0268 0062 00 -~ = = = = =
2 04 0358 0150 00845 0:038 00 - = = = = -
S 06 0419 0215 0148 0101 0625 0030 0-0 - - =
08 0464 0264 0198 0150 0113 0081 0052 0025 0-0 - —
10 0-500 0-306 0239 0196 0-155 0-124 0095 0070 0-045 0022 00
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348 J. G. GUNN ON LINEARIZED SUPERSONIG

TABLE 3. PRESSURE ON RECTANGULAR AEROFOIL AT INCIDENCE (4p,=TWO-
\ DIMENSIONAL PRESSURE). VALUES OF 4p/4p,

x/2b
0 0-1 0-2 0-3 04 0-5
0 0 1-0 1-0 1-0 1-0 1-0
0-2 0 0-5 1-0 1-0 1-0 1-0
0-4 0 0-333 0-5 0-667 1-0 1-0
0-6 0 0-268 0-392 0-500 0-608 0-464
3 08 0 0-233 0-333 0-189 0-167 0-160
a 10 0 0 0 0 0 0
N 1.2 0 —0-085 —0-123 —0-114 —0-108 —0-106
1-4 0 —0-086  —0-122 —0-156 —0-185 —0-184
1-6 0 —0-085 —0-122 —0-155 —0-184 —0-184
1-8 0 —0-085 —0-122 —0-128 —0-130 —0-130
2-0 0 —0-060 —0-075 ~0-078 —0-085 —0-082

The general distribution of the excess preésure is clear from table 8. The two-dimensional
value 4p, is steadily eaten into by the waves 4p,, 4p{ radiating from O and O’. By the time
line AA’ is reached the excess pressure has fallen to zero all along the span. Thereafter the
excess pressure changes sign, and becomes steadily more negative with increasing z, until
the arrival of the waves from 4 and A’ reverses the process once more. Physically, the
behaviour seems quite clear when the hydrodynamic analogue of the waves produced by
transverse movement of a plank is considered. Excess pressure on the aerofoil is now replaced
by the height of the water surface along the plank. As the plank is initially jerked into motion
the level piles up on one side and sinks on the other, but waves running round the edges of the
plank gradually rectify the difference of level at the plank, until as we have seen at time
t = (2b/c) the level has sunk to zero all round the plank. Thereafter the level tends to sink
farther on the leading side of the plank and to pile up on the other, but again this tendency
is counteracted by the new waves running in from the edges. So, in fact, we have an oscil-
latory process—the oscillations in level becoming smaller, and the motion settling down to
a steady one, as the wave energy spreads out from the plank over the surface of the
water.

As pointed out earlier, the waves coming in at 4, 4’ ensure that there is no discontinuity
of pressure at the edge of the aerofoil (or of water level round the edge of the plank). The
detailed results given are broken off at z = 4¢b. If we continued the solution we should find
the excess pressure falling to zero again, along the backward Mach lines from B and B/,
then once more rising to smaller positive values.

It may be well before discussing lift coefficients and the position of the centre of pressure
for a rectangular plate at incidence to recall the limitations of the linearized supersonic
aerofoil theory. A good discussion of these is given by Lighthill for the two-dimensional
case. From this it is clear that the range of applicability of the linearized theory is quite
restricted. It underestimates the pressure behind a shock wave corresponding to compressive
deflexion round a corner, and by a comparable amount overestimates the suction produced
by an expansion through the same angle. These effects tend to cancel out, in evaluating
the total lift or drag on any aerofoil, but in general will lead to a wrong estimation of moments
and of the position of the centre of pressure. The second-order two-dimensional theory of
Busemann gives much better agreement with the exact shock wave and expansion
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- calculations, though still erring on the same side as the linearized theory. This second-order
theory expresses the excess pressure at any point on a two-dimensional aerofoil in the

form
4p = An+ Br?,

where 7 denotes the local slope of the aerofoil. For a flat plate the centre of pressure will
thus still remain at half-chord, but for a practical aerofoil, with thickness at.incidence, the
centre of pressure will move forward. Details are given by Lighthill.

A further limitation of the two-dimensional linearized theory occurs at Mach numbers so
low that the shock wave at the leading edge becomes detached. Atsuch Mach numbers the
whole basis of the theory has broken down, and, indeed, no theoretical method to date offers
much promise.

It remains, however, that at moderate Mach numbers and angles of incidence the
linearized theory provides a reasonable guide to the actual behaviour, and one whose
accuracy can be easily estimated by comparison with the exact two-dimensional calculations.
When we extend to the three-dimensional case the physical limitations on the linearized
theory must remain very similar. Unfortunately, a second-order theory is no longer simple
to find, but the type of correction to be applied to the linearized theory can be roughly
deduced from those in the two-dimensional case.

For the finite rectangular plate at incidence the lift can easily be calculated for aerofoils
with chord less than 2ba (figure 7) simply by adding the contributions from ¢,, ¢; and ¢;.
If A is used to denote the aspect ratio we find for such aerofoils for the total lift L

L- Lo(l _ provided 4>,

L
2Aa)’
where L, is used to denote the lift force derived using the two-dimensional value for the
excess pressure. With similar restriction on 4 the distance of the centre of pressure ahead of
half-chord can also be calculated. It is given by %(mltl) , where, as usual, ¢ denotes the
chord. These results are given by Taunt & Ward (1946). The value of the formula for the
centre of pressure is doubtful, as noted also by Lighthill, for practical purposes, as for
- a reasonably thick aerofoil the second-order correction in the two-dimensional theory
shifts the centre of pressure forward by an amount comparable with that given here.
Taunt & Ward suggest a rough method of applying the Busemann correction to the three-
dimensional theory.

For aspect ratios greater than 1/a the above results break down and there now appears
no simple analytical formula for the lift and moments. They can, however, be quite simply

_ calculated by numerical i 1ntegrat10n from table 3. For example, for 4 = 1/2a it is found that
= 1/5L,.

SYMMETRICAL RECTANGULAR AEROFOIL AT ZERO INCIDENCE

From the earlier considerations of the boundary conditions it is clear that the linearized
treatment of any symmetrical aerofoil, of rectangular plan at any incidence, may be found
by compounding the incidence case for a flat plate, dealt with in the previous section, with
the treatment of the aerofoil shape at zero incidence. A general method for handling this
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350 J. G. GUNN ON LINEARIZED SUPERSONIC

latter problem has already been given. However, it may be worth while reconsidering the
problem by the methods of the last section.

As a first simple case we consider a supersonic stream impinging symmetrically against
a semi-infinite wedge of semi-angle ¢ say. In plan, we assume the leading edge to be situated
along the x-axis and the tip lies along the z-axis. The Laplace transform of the velocity
potential again satisfies the equation '

0% 0%
axg‘l'ay '—“ﬁ ¢>

together with the boundary condition
¢

=
dy b
=——Z€) when y=0—,x>0.

when y=0-4,x>0

The value of ¢ can at once be written down from the Green’s function formulae, (31)
and (36),

b (ro, 0o) = —‘F Ko{“/’ J(r*+ 15 —2rr cos by)} dr, (50)
where, as usual, (y,0,) are polar co-ordinates in the (x,y) plane.
The interpretation of (50) presents no difficulties, and will not be given in detail. We find
that the excess pressure 4p at any point (x, z) on the surface (within the Mach cone from the
leading corner) can be expressed

_  2 ¢ -1 1 —1‘”)
Ap—+pUﬂ (7r cos z) Apo(l cos™! — (51)

where 4p, represents the two-dimensional value. More generally at any point co-ordinates
(x’ y 3 z) b X > O

Ap(x,y,z)=Ap0(l—-%cos“~7(z%j%%). _ - (52)

This excess pressure can, as in the case of the flat plate at incidence, be regarded as made up
of a plane-wave contribution together with a cone wave radiating from the corner O. There
is an important distinction now, however, in that the excess pressure is symmetrical on the
two sides of the aerofoil. As a consequence, in treating the case of the wing of finite span,
2b say, no further waves need be added at the points 4, 4, etc. (figure 7)~The complete
solution for all values of z is given by the plane wave together with the two cone waves from
0, 0', for these suffice to satisfy the boundary conditions and preserve the continuity of the
velocity components throughout. We may refer again to the water-wave analogy. The two
sides of the plank are now moved apart with a given velocity, and initially the water piles
up on either side. The equalizing waves from the corners O, O’ are now the same on either
side; thus there are no reflected waves produced when, for example, the wave from O runs
off the plank at O'.

Thick aerofoils may be treated by superposmon of solutions of the type given above, or
if their surface is of suitable analytical form it may be more convenient to substitute this
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directly in deriving the boundary condition for d¢/dy. For example, to take the simplest
case, the double-wedge aerofoil is simulated by subtracting from the solution for a sym-
metrical wedge, semi-angle ¢, vertex at z = 0, that for a similar wedge semi-angle 2¢, vertex
at z = J¢. More generally, if we consider a semi-infinite aerofoil, with cross-section given by

y=1(2),

the pressure at a point on its surface within the Mach triangle from the leading corner O
can be written in the form '

Ap—Apy __1'(0) (oa_x)-_i f%‘“"cos—l SO (53)

pU? o z) maly

where 4p, is used to denote the two-dimensional value of the excess pressure.

It is easy to demonstrate from (53), as was shown by Lighthill by other means, that, for
symmetrical rectangular wings of aspect ratio greater than 1/a, there is no induced drag at
zero incidence. Ifthe aerofoil is of chord ¢, then the decrement of drag due to the pressure
defect (53) may be written

AD = [y () dz [ L (0) cost E [ eost Sy (g) e s

_~i ‘ ()a’z{fo n'(0) cos“g?dx%—f: d{f(z‘g)/“ 0s™ 1——de}

(]

Introducing ax/z = ¢ in the first integral, and ax/(z—{) = ¢ in the second, we find

4D = ;T%f:cos"‘ado[f:n'(z) dz{ f (z—0) d‘:}]
= %f:cos‘l ada{f:ﬂ'(z) a’z}2 = 0.

The result depends essentially on the fact that the excess pressure given in (51) is of the
cone-field type depending not on the distance of the point of measurement from the corner,
but on its angular position with reference to it. It will cease to hold when the aspect ratio is
less than 1/a. Some calculations have been made for this case, and it is found, for example,
that for a double-wedge aerofoil, aspect ratio 1/2, the drag is about two-thirds of that given
by the two-dimensional theory.

RECTANGULAR AEROFOILS—MORE GENERAL PROBLEMS

So far we have been considering, for the most part, problems of the ‘cone-field’ type—the
only exception being the prolongation of the solution for the flat plate at incidence. The
methods developed, however, permit the solution of more general problems. Before leaving
the case of rectangular plan aerofoils with leading edge normal to and tips parallel to
the stream, it may be worth while to illustrate roughly some more general cases of this

type.

Vor. 240. A. 44
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(a) Tapered aemjbi'l
We consider a symmetrical aerofoil of span 25 at incidence ¢, with thickness tapered across
the span according to a sine factor, so that apart from the incidence, the upper surface may

be represented by X
y=1(z)sin27. (54)

The aerofoil has thus zero thickness at either tip. As usual the solution is found by super-
position of the symmetrical zero incidence case, requiring

d¢ , .\ sinx
3y = +79'(2) o~ 3 Yy=>=E0, 0<x<2b,
and of the anti-symmetrical case
d¢ sin 7x
@%—6'—2@— as y—>+0,0<x<2b.

The symmetrical problem, giving the wave drag at zero incidence, is of no special interest,
and can be solved by the methods given earlier. The anti-symmetrical problem is of a new
type, but, at least for aerofoils of aspect ratio greater than 2/« can be solved fairly directly
by the Green’s function methods, using the function G,, (31), (36) and (43). For the trans-
form ¢ we find

E - erro)cos oexp [—ap /(r?+13—2rmycos G, 4u?)] du (55)

¢ = _15 51n§—b-dr J (21— 2rr; cos 0+ u?)

where the continuation of the boundary condition for d¢/dy beyond x = 25 will not affect
conditions in the range 0<x< ) for the aspect ratios considered. Interpreting formally,
introducing Dirac’s d-function, we have for d¢/dz, in the case 6, = 0,

@_Jr ” z—aR) o5 4rdu, (56)

where the integral is taken over the area between the positive 7-axis, and the upper half of
the parabola «? = 477, in the (,7) plane. Here we have written

R? = (r—ry)?+u?

Introducing polar co-ordinates R, ¢ in the 7, # plane, we may write

f f 5(z—aR) sin (’0+212%055) dR b,

where 6 is measured from the r-axis, the integral being over the same area as previously.
From the properties of the d-function it is clear that significant contributions to the integral
come only from the area around the circumference of the circle (r—r)2+4-u? = z%/a?. If
z<ary the whole of this circle is contained within the parabola, and we find

¢ " in 7(ry+z/acos §)

e = d

0z + 0 { 2b } g

__e ; 1rr0 nZz ’
in'G % (35 (57)
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If, on the other hand, z>ar, i.e. the point considered is Within the Mach triangle of the
corner O, then
[
%ﬁ = 7:: f sin {2”[) (r0+ cos 19)} df, where sin%« = A/Z‘—’EL. (58)

z

The method can be extended 1mmed1ately to any other tapering function. In particular,
when the cross-section is constant we find (?¢/3z = ¢b,[na, conﬁrmlng the result obtamed
earlier.

(b) Aerofoil with curved leading edge—wing tip parallel to stream.

As a last example of aerofoils with wing tips parallel to the stream we now consider the
case of a curved leading edge with the restriction that the tangent to the leading edge must
at no point be swept back beyond the Mach angle. The plan of the aerofoil may be as
depicted in figure 8. We shall again restrict the argument to cases where the Mach lines

0 B
— =~ x
- N ~~
A’/ \\A’
A
2b
z
FIGURE 8

from the corners 4, 4’ do not intersect on the aerofoil surface A symmetrical wing at zero
incidence presents no special problems. If we consider the wing as a flat plate at incidence
¢, then by the restriction on the leading edge’s sweep back it is ensured that there is no
disturbance of the stream ahead of the leading edge. Accordingly, if we represent the

leading edge by the curve
‘ z={(x) (¥>0),

then we can form ~ 3¢ f e~hz L (?¢ a’z = —% e bE®, (59)

We may assume the curve z = (x) continued beyond x = 2b in any convenient way, as this
will not alter conditions at points on the aerofoil with which we shall be concerned, such that
0<x<b. Now applying the Green’s function method we have the solution for ¢ along the
x-axis, at the point x,,

5 o g2/ exp[— “PJ{(x %)? +u?}]
el e

Interpreting this result, as in the last section, and once more introducing polar co-ordinates
R, 0 in the (x, u) plane, with pole at (x,, 0), we find for (d$/dz) at the point (x, z) on the plate

I

44-2
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where the area S, as previously, denotes the upper half of the parabola u? = 4xx,. The
integral with respect to R can be simply carried out. We find

W_en
0z maly 1+ (x)/acos’

(62)

where § = 0, corresponds to the intersection between the curves «? = 4xx,, and z/a = R+{(x).
Also in the denominator of the integrand x is a function of ¢, given by

2= aR - {(x) = U g,

Exact integration of (62) is not always possible, but the formula is not a very troublesome
one for numerical integration. Some simple cases are directly integrable; e.g. the case,
treated by Ward by the cone-field method, where the leading edge consists of the straight
lines, shown dotted in figure 8. In this case we may write

¢(x) =h(1—§) (0<x<b)
—n(5-1) (b<x<2b).

Hence {'(x) = Fm according as 0<<x<b or b<x<2b, where m = h/b.

| w
e 4z,
Yau=R+{(x)
o\
0 Zo x=b z

~ Ficure 9

Various possibilities can now arise, supposing that x, is to be restricted to be less than &.
First, if z< (axy+4%) and <a(b—x,), then the curve z/a = R+-{(x) lies entirely within the

parabola and
i f do € (63)
0z mlya— mcosﬁ J(@2—m?)" ‘

This is the two-dimensional value for the swept-back wing. The restriction on z simply
means that the point lies outside the Mach cones from both 4 and B.
Secondly, suppose z>axy+h, but <a(b—=x,). The point lies within the Mach cone from

4. Then
dg e do 2¢ oy J(etm AL
E~;f0 a—mcosl  w/(a?—m?) tan {A/(a——m)tan 2}’ (64)
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where 6,, corresponding to the intersection of the two curves in figure 9, is such that

0, x5(x—m)
2%1 __ %o )
tany z—h—ax,

o tand;  ax,
' tang  (z—h)

If we write (figure 8),

then (64) is easily seen to be equivalent to Ward’s result,

Finally, if z>a(b—x,), but <ax,-+#, so that the point is within the Mach cone from B,
then, with the notation of figure 9,

a¢__eUez d6 " df }

iz 7wl afmeosd T 9, a—mcosf
This is easily evaluated to be

p 2¢
0z~ mJ(a2—m?)

o)

= 0, say. An equivalent result was given by Ward.

cot™! {

where cosf, = Q:;M

CONCLUSIONS

So far this argument has been confined exclusively to aerofoils with wing tips parallel to
the stream. The case of zero incidence on a symmetrical aerofoil has proved to be susceptible
of a general solution not confined to such cases. In actual problems the methods depending
on the use of the appropriate Green’s function for a semi-infinite barrier are found to be the
most convenient way of arriving at a solution. The case of non-zero incidence is more
difficult of treatment. However, using operational methods, based on the classical solutions
of diffraction problems by Sommerfeld and others, a wide range of problems has been seen
to be soluble in a systematic manner. These include all problems of the type considered,
previously solved by the supersonic source and cone-field methods, and in addition can be
generalized to other problems not amenable to these more specialized techniques.

The operational methods, with their wave interpretation and suggestive analogies,
undoubtedly form an effective method of dealing with the linearized equation for supersonic
flow. It is also satisfying, if scarcely surprising, to note the formal analogy between the
diffraction and aerofoil problems. It is the author’s opinion that the use of ‘sources’ and
‘doublets’ as a technique in the solution of supersonic problems is really misplaced, and
a remnant from subsonic theory. They may, of course, be of physical interest in the inter-
pretation of solutions otherwise obtained.

The outstanding problems still to be dealt with by the operational methods are those
where the wing tips are no longer parallel to the stream, and cases with the leading edge
swept back beyond the Mach angle. A variety of such problems are considered by the
author in Part II.
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